## Dearomatizing Cyclization of Arylsulfonylalkoxymethyl Lithiums: A Route to the Podophyllotoxin Skeleton

Jonathan Clayden,\* Martin N. Kenworthy, and Madeleine Helliwell

Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

j.p.clayden@man.ac.uk

Received January 13, 2003

## ORGANIC LETTERS 2003 Vol. 5, No. 6 831-834

## ABSTRACT



The phenylsulfonyl group promotes the dearomatizing cyclization of tethered organolithiums onto aromatic rings. With an ether tether, the cyclizations create a new tetrahydrofuran ring, and both cyclization and subsequent electrophilic quenches proceed with high levels of diastereoselectivity. The sulfonyl group can be removed from the cyclized products oxidatively or reductively. The dearomatizing cyclization of a naphthyl sulfone was used in the synthesis of a close structural analogue of podophyllotoxin.

Dearomatizing additions to aromatic systems<sup>1</sup> allow the stereocontrolled formation of cyclohexene and cyclohexanone derivatives with regiocontrol offered by aromatic substitution chemistry and with stereochemistry controlled in the addition step. While Birch reduction generates nucleophilic partially saturated arene derivatives that react with electrophiles,<sup>2</sup> polarity-reversed synthetic equivalents to the Birch reduction in which nucleophiles are added to electrophilic<sup>3</sup> aromatic (particularly naphthyl) rings are also known. When the nucleophile is intramolecular, a dearomatizing cyclization reaction ensues,<sup>4,5</sup> allowing the stereoselective synthesis of ring-fused molecules. We used dearo-

<sup>(1)</sup> Bach, T. Angew. Chem., Int. Ed. 1996, 35, 729. Mander, L. N. Synlett 1991, 134.

<sup>(2)</sup> Rabideau, P. W.; Marcinow, Z. Org. React. **1992**, 42, 1. Donohoe, T. J.; Garg, R.; Stevenson, C. A. Tetrahedron: Asymmetry **1996**, 7, 317. Schultz, A. G. Chem. Commun. **1999**, 1263.

<sup>(3)</sup> For additions to unactivated naphthalene, see: Dixon, J. A.; Fishman, D. H.; Dudinyak, R. S. *Tetrahedron Lett.* **1964**, *5*, 613. See the following for dearomatizing addition to rings activated by the substituents indicated. Sulfones: Stoyanovich, F. M.; Karpenko, R. G.; Gol'dfarb, Y. L. *Tetrahedron* **1971**, *27*, 433. Oxazolines: Meyers, A. I.; Roth, G. P.; Hoyer,

<sup>D.; Barner, B. A.; Laucher, D. J. Am. Chem. Soc. 1988, 110, 4611. Meyers,
A. I.; Lutomski, K. A.; Laucher, D. Tetrahedron 1988, 44, 3107. Shimano,
M.; Meyers, A. I. J. Am. Chem. Soc. 1994, 116, 6437. Gant, T. G.; Meyers,
A. I. Tetrahedron 1994, 50, 2297. Esters: Shindo, M.; Koga, K.; Asano,
Y.; Tomioka, K. Tetrahedron 1999, 55, 4955. Carboxylates: Plunian, B.;
Mortier, J.; Vaultier, M.; Toupet, L. J. Org. Chem. 1996, 61, 5206.
Amides: Clayden, J.; Frampton, C. S.; McCarthy, C.; Westlund, N.
Tetrahedron 1999, 55, 14161. Clayden, J.; Foricher, Y. J. Y.; Lam, H. K.
Chem. Commun. 2002, 2138. Clayden, J.; Foricher, Y. J. Y.; Lam, H. K.
Eur. J. Org. Chem. 2002, 3558. Nitriles: Sanchez, C. M. A.; Iglesias, M.
J.; Ortiz, F. L. Tetrahedron Lett. 2002, 43, 2565. Imines: Meyers, A. I.;
Brown, J. D.; Laucher, D. Tetrahedron Lett. 1987, 28, 5279 and 5283.
Metals: Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000, 100, 2917. Bao, M.; Nakamura, H.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 759.</sup> 

<sup>(4)</sup> For a review of organolithium cyclization, see: Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Oxford, 2002; pp 282– 335. Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. **2002**, 646, 59.

matizing cyclization of lithiated amides to make intermediates for the synthesis of kainoid amino acids,<sup>6</sup> and recently we reported cyclization of some lithiated oxazolines.<sup>7</sup>

A scattered handful of reports<sup>8</sup> suggested to us that the dearomatizing cyclization of lithiated sulfones and sulfonamides might also be generalized into a valuable synthetic method and that we might be able to capitalize on the versatility of sulfone chemistry<sup>9</sup> in the transformation of the products into useful targets. In this paper, we report that organolithiums tethered to aryl sulfones cyclize with dearomatization and describe the transformation of the products of this reaction into an analogue of the anticancer agent podophyllotoxin.

The starting materials **18** and **19** (Scheme 1) for the cyclization were made straightforwardly from 1-methoxy-



<sup>*a*</sup> Reagents: (i) Br<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> 100%; (ii) *n*-BuLi (0.95 equiv), Et<sub>2</sub>O, -78 °C; (iii) Me<sub>2</sub>NCHO; (iv) NaBH<sub>4</sub>, MeOH, 84% from **2**; (v) MeLi, THF, -78 °C, 88% ( $\pm$ )-**11**; (vi) MeCON(OMe)Me, 57%; (vii) CBS reagent, BH<sub>3</sub>:SMe<sub>2</sub>, THF, 99% (+)-**11** (95% ee); (viii) *t*-BuMe<sub>2</sub>SiCl, DMAP, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, 90%; (ix) *n*-BuLi, THF, -78 °C; (x) Ph<sub>2</sub>S<sub>2</sub>, 92% **9** from **7**; (xi) *m*-CPBA, EtOAc, NaHCO<sub>3</sub>, 93% **10**, or Na<sub>2</sub>B<sub>2</sub>O<sub>6</sub>, AcOH, 80% **15** from **12**; (xii) *t*-BuMe<sub>2</sub>SiOTf, lutidine, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 93%; (xiii) Bu<sub>4</sub>NF, THF, 94% **16** from **10**, 62% **16** from **7**, or 98% **17** from **15**; (xiv) NaH, THF, then Bu<sub>3</sub>SnCH<sub>2</sub>I, 75% **18** or 60% **19**.

naphthalene 1 by bromination and selective bromine-lithium exchange<sup>10</sup> of 2 to yield the more stable monolithio species 3. Formylation with DMF, reduction to 5, and protection

832

gave the silyl ether **7**. A second bromine—lithium exchange, trapping with diphenyl disulfide, and oxidation gave the sulfone **10**, which was deprotected. Alkylation of **16** with iodomethyltributylstannane<sup>11</sup> gave the cyclization precursor **18**. A parallel route gave the chiral stannane **19**: enantiomerically enriched material was obtained by CBS reduction<sup>12</sup> (to **11**) of the ketone **6** derived by Weinreb acylation<sup>13</sup> of **3**; **11** was obtained in racemic form by addition of MeLi to aldehyde **4**. Protection, introduction of the sulfone, and deprotection gave alcohol **17** and hence the stannane **19**, in both racemic and enantiomerically enriched<sup>14</sup> forms.

Treatment of a THF solution of 18 with methyllithium in the presence of TMEDA promoted transmetalation to the organolithium 20 (Scheme 2). Even at -78 °C, this organolithium cyclized to **21** by attack on the naphthyl ring: quenching the orange anion 21 with a solution of NH<sub>4</sub>Cl returned the unstable tricyclic enol ether exo-22a as a single diastereoisomer in 60% yield. Hydrolysis of the enol ether to ketone exo-23a (obtained in 69% yield) was accompanied by a small amount (10%) of epimerization to endo-23. This diastereoisomer was obtained as the only product when the reaction mixture, instead of being quenched with ammonium chloride quench at -78 °C, was warmed to 20 °C with methanol. A different unstable enol ether, presumably endo-22, was observed in the crude reaction mixture, and acid hydrolysis gave solely the ketone endo-23 in 59% yield. X-ray crystal structures (Figure 1a,b) proved the stereochemistry of the products. Epimerization of the sulfonyl group to the endo face appears to be due to warming in the presence of methoxide, though it is not clear why endo-22 should be more stable than *exo*-22a.

Alkylation of the sulfone anion **21** followed by hydrolysis gave good yields of single diastereoisomers of alkylated ketones **23b**-**d**, all with the same relative stereochemistry: the sulfonyl group in **23a**-**d** occupies the *exo* face of the cis-fused tricycle.<sup>15</sup>

Cyclization of the chiral stannane **19** was fully diastereoselective at both new stereogenic centers when the inter-

(8) Breternitz, H.-J.; Schaumann, E.; Adiwidjaja, G. Tetrahedron Lett.
1991, 32, 1299; Crandall, J. K.; Ayers, T. A. J. Org. Chem. 1992, 57, 2993.
Padwa, A.; Filipkowski, M. A.; Kline, D. N.; Murphree, S. S.; Yeske, P. E. J. Org. Chem. 1993, 58, 2061. Aggarwal, V. K.; Ferrara, M. Org. Lett.
2000, 2, 4107. Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335.

(9) Simpkins, N. S. Sulphones in Organic Synthesis; Pergamon: Oxford, 1993.

(10) See: Green, K. J. Org. Chem. 1991, 56, 4325.

(11) Seitz, D. E.; Carroll, J. J.; Cartaya, C. P.; Lee, S.-H.; Zapata, A. Synth. Commun. 1983, 13, 129.

(12) Prasad, K. R. K.; Joshi, N. N. Tetrahedron: Asymmetry 1996, 7, 3147.

(13) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.

(14) Ee of 95% determined by HPLC (Whelk-O1).

(15) Stereochemistry of alkylated compounds exo-23b-d was deduced from the X-ray crystal structures of exo-23b and exo-23d.

<sup>(5)</sup> Ahmed, A.; Clayden, J.; Rowley, M. Chem. Commun. **1998**, 297. Ahmed, A.; Clayden, J.; Yasin, S. A. Chem. Commun. **1999**, 231. Clayden, J.; Tchabanenko, K.; Yasin, S. A.; Turnbull, M. D. Synlett **2001**, 302. Clayden, J.; Menet, C. J.; Mansfield, D. J. Org. Lett. **2000**, 2, 4229. Clayden, J.; Menet, C. J.; Mansfield, D. J. Chem. Commun. **2002**, 38. Fernández, I.;

Ortiz, F. L.; Tejerina, B.; Granda, S. G. *Org. Lett.* **2001**, *3*, 1339. Gómez, G. R.; Ortiz, F. L. *Synlett* **2002**, 781. Fernández, I.; Ortiz, F. L.; Velazquez, A. M.; Granda, S. G. *J. Org. Chem.* **2002**, *67*, 3852. Nishiwaki, K.; Ogawa, T.; Matsuo, K. *Angew. Chem., Int. Ed.* **2002**, *41*, 484.

<sup>(6)</sup> Clayden, J.; Tchabanenko, K. *Chem. Commun.* **2000**, 317. Clayden, J.; Menet, C. J.; Tchabanenko, K. *Tetrahedron* **2002**, 58, 4727. Ahmed, A.; Bragg, R. A.; Clayden, J.; Tchabanenko, K. *Tetrahedron Lett.* **2001**, 42, 3407. Bragg, R. A.; Clayden, J.; Bladon, M.; Ichihara, O. *Tetrahedron Lett.* **2001**, 42, 3411.

<sup>(7)</sup> Clayden, J.; Kenworthy, M. N. Org. Lett. 2002, 4, 787.





<sup>*a*</sup> Reagents: (i) MeLi, TMEDA, THF,  $-78 \degree C$ ; (ii)  $E^+ = NH_4Cl$ (-78 °C) or MeOH (from -78 to 20 °C), MeI, allyl bromide or BnBr; (iii) 2 M HCl (aq). <sup>b</sup>From NH<sub>4</sub>Cl quench. <sup>c</sup>From MeOH quench.

mediate 25 was alkylated. Good yields of single diastereoisomers of the stable enol ethers exo-26b-d were obtained, in which the methyl group  $\alpha$  to oxygen occupies the *exo* face during the cyclization and the sulfone adopts the exo face during the alkylation. As with 18, protonation with NH<sub>4</sub>-Cl returned diastereoisomer exo-26a, which hydrolyzed to give ketone exo-27 (97% ee), while protonation by warming with MeOH gave predominantly a different (presumably endo) diastereoisomer of the enol ether 26, which hydrolyzed to give mainly the ketone endo-27 (94% ee) bearing the sulfonyl group on the *endo* face.<sup>16</sup> Figure 1c,d shows the X-ray crystal structures of exo- and endo-27.

Sulfones are valuable synthetic intermediates because once the anion-stabilizing ability of the sulfonyl group has been



Figure 1. X-ray crystal structures of cyclized sulfones.

exploited, it can be disposed of by oxidation, reduction, or elimination.<sup>9</sup> Scheme 3 shows some representative reductive and oxidative transformations of cyclized sulfones 23 and 27. The sulfonyl group of both exo and endo sulfones appears



<sup>a</sup> Reagents: (i) LiBHEt<sub>3</sub>, THF; (ii) NaBH<sub>4</sub>, MeOH; (iii) Na/Hg, MeOH, Na<sub>2</sub>HPO<sub>4</sub>; (iv) *i*-Pr<sub>3</sub>SiOTf, lutidine, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 72%. (v) (1) *n*-BuLi, THF, -78 °C; (2) MoO<sub>5</sub>•py•DMPU ("MoOPD"), THF, 72% (99% based on recovered starting material, which is enriched in 28a). <sup>b</sup>28b made by LiBHEt<sub>3</sub> reduction of exo-23a and not isolated before protection. Only 28b was silvlated; 28a was removed as an alcohol.

<sup>(16)</sup> Ee of exo-27 was deduced from the ee of an enone byproduct formed in 34% yield by 5-endo-trig retro-Michael elimination of alkoxide from exo-27. An X-ray crystal structure of this byproduct confirmed the absolute stereochemistry of 19 and 24-27. The ees of this byproduct and of endo-27 were determined by HPLC (Whelk-O1).





<sup>*a*</sup> Reagents: (i) (1) LiHMDS, THF, -78 °C; (2) 5-chloropyridylNTf<sub>2</sub>, THF, from -78 to 20 °C, 91% (97% based on recovered starting material). (ii) PhB(OH)<sub>2</sub>, Pd(PPh<sub>3</sub>)<sub>4</sub>, K<sub>3</sub>PO<sub>4</sub>, KBr, dioxane, 90 °C, 90%. (iii) (1) *t*-BuLi, THF, -78 °C; (2) Davis' oxaziridine (PhCH(O)NTs), THF, 56% (69% based on recovered starting material); (iv) H<sub>2</sub>, Pd/C, EtOH, 57% + 27% diol from overreduction; (v) PCC, CH<sub>2</sub>Cl<sub>2</sub>, 72%; (vi) HF:py, MeCN, 62%; (vii) Bu<sub>4</sub>NF, THF, 72%.

to shield very effectively one face of the ketone (see Figure 1), allowing stereoselective reduction of *exo-* and *endo-23a* to **28a** and **28b**,<sup>17</sup> respectively, and of *exo-23d* to **31**. In the reduction of *endo-27* with lithium triethylborohydride, epimerization of the endo sulfone to exo competed with the reduction and gave a mixture of diastereoisomers **33**. Desulfonylation of **31** and **33** with sodium amalgam gave good yields of the tricyclic alcohols **32** and **34**; direct reduction of the ketosulfone *exo-23a* promoted both desulfonylation and nonstereoselective reduction of the ketone

to give **29**. Oxidative removal of the sulfone<sup>18</sup> was also possible, and the lithio derivative of a protected form of sulfone **28b** reacted cleanly with the DMPU equivalent of MoOPH ("MoOPD")<sup>19</sup> to yield ketone **30**.

The 6,6,5-tricyclic system present in these desulfonylated products is also found in lignan and alkaloid natural products such as podophyllotoxin  $42^{20}$  and himbacine  $43^{21}$  We were able to convert **30** into a known skeletal analogue  $40^{22}$  of podophyllotoxin, with full relative stereochemical control.

Conversion of ketone **30** to the enol triflate **35**<sup>23</sup> allowed us to introduce the aryl substituent of 36 by a Suzuki coupling.<sup>24</sup> Oxidation of this allylic ether was attempted under a number of conditions, and the most successful method we found was to deprotonate 36 with t-BuLi. oxidizing the anion with Davis' oxaziridine<sup>25</sup> to yield the aldehyde 37. Careful hydrogenation (over-reduction was always a problem) of 37 gave trans hemiacetal 38 with introduction of hydrogen trans to the bulky i-Pr<sub>3</sub>SiO group and perhaps also directed syn by the primary alcohol. Oxidation to the lactone with pyridinium chlorochromate and deprotection with HF-pyridine yielded 40,<sup>26</sup> a structural analogue of the core tetracycle of podophyllotoxin. Deprotection under more basic conditions (Bu<sub>4</sub>NF, THF) caused a precedented<sup>27</sup> epimerization  $\alpha$  to the lactone carbonyl and gave **41**, an analogue of picropodophyllin.<sup>20</sup>

**Acknowledgment.** We are grateful to the EPSRC and to Knoll-BASF Pharma for support.

**Supporting Information Available:** Experimental procedures and characterization for new compounds and X-ray data for *exo-23a*, *endo-23*, *exo-27*, *endo-27*. This material is available free of charge via the Internet at http://pubs.acs.org.

## OL0340585

(19) Little, R. D.; Myong, S. O. *Tetrahedron Lett.* **1980**, *21*, 3330. Anderson, J. C.; Smith, S. C. *Synlett* **1990**, 107.

- (22) Macdonald, D. I.; Durst, T. J. Org. Chem. 1988, 53, 3663. Charlton, J. L.; Plourde, G. L.; Koh, K.; Secco, A. S. Can. J. Chem. 1990, 68, 2022
  - (23) Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299.

<sup>(17)</sup> Alcohol **28a** has the relative stereochemistry (proved by the X-ray crystal structure) of epipodophyllin, the lignan component of the drug's etoposide and teniposide (see ref 20)

<sup>(18)</sup> Chemla, F. J. Chem. Soc., Perkin Trans. 1 2002, 275.

<sup>(20)</sup> Ayres, D. C.; Loike, J. D. Lignans; Chemical, Biological and Clinical Properties; Cambridge University Press: Cambridge, 1990. Andrews, R. C.; Teague, S. J.; Meyers, A. I. J. Am. Chem. Soc. 1988, 110, 7854.

<sup>(21)</sup> Takadoi, M.; Katoh, T.; Ishiwata, A.; Terashima, S. *Tetrahedron Lett.* **1999**, *40*, 3399

 <sup>(24)</sup> Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201.
 (25) Davis, F. A.; Sheppard, A. C. Tetrahedron 1989, 45, 5703.

<sup>(26)</sup> Spectroscopic data for this compound agreed with the literature:

see ref 22. (27) Bertounesque, E.; Imbert, T.; Monneret, C. *Tetrahedron* **1996**, *52*, 14235.